Simulations of binary hard-sphere crystal-melt interfaces: interface between a one-component fcc crystal and a binary fluid mixture

نویسندگان

  • Rachel Sibug-Aga
  • Brian B. Laird
چکیده

The crystal-melt interfaces of a binary hard-sphere fluid mixture in coexistence with a single-component hard-sphere crystal is investigated using molecular-dynamics simulation. In the system under study, the fluid phase consists of a two-component mixture of hard spheres of differing size, with a size ratio α = 0.414. At low pressures this fluid coexists with a pure fcc crystal of the larger particles in which the small particles are immiscible. For two interfacial orientations, [100] and [111], the structure and dynamics within the interfacial region is studied and compared with previous simulations on single component hard-sphere interfaces. Among a variety of novel properties, it is observed that as the interface is traversed from fluid to crystal the diffusion constant of the larger particle vanishes before that of the small particle defining a region of the interface where the large particles are frozen in their crystal lattice, but the small particles exhibit significant mobility. This behavior was not seen in previous binary hard-sphere interface simulations with less asymmetric diameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces.

We present a reliable method to define the interfacial particles for determining the crystal-melt interface position, which is the key step for the crystal-melt interfacial free energy calculations using capillary wave approach. Using this method, we have calculated the free energies gamma of the fcc crystal-melt interfaces for the hard-sphere system as a function of crystal orientations by exa...

متن کامل

Self-assembly of a colloidal interstitial solid with tunable sublattice doping.

We determine the phase diagram of a binary mixture of small and large hard spheres with a size ratio of 0.3 using free-energy calculations in Monte Carlo simulations. We find a stable binary fluid phase, a pure face-centered-cubic (fcc) crystal phase of the small spheres, and binary crystal structures with LS and LS(6) stoichiometries. Surprisingly, we demonstrate theoretically and experimental...

متن کامل

Molecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces

In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...

متن کامل

Molecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces

In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...

متن کامل

Packing of crystalline structures of binary hard spheres: an analytical approach and application to amorphization.

The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a bina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008